Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(32): 7149-7156, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37540032

RESUMO

Superlattice potentials imposed on graphene can alter its Dirac states, enabling the realization of various quantum phases. We report the experimental observation of a replica Dirac cone at the Brillouin zone center induced by a superlattice in heavily doped graphene with Gd intercalation using angle-resolved photoemission spectroscopy (ARPES). The replica Dirac cone arises from the (√3× âˆš3)R30° superlattice formed by the intervalley coupling of two nonequivalent valleys (e.g., the Kekulé-like distortion phase), accompanied by a bandgap opening. According to the findings, the replica Dirac band in Gd-intercalated graphene disappears beyond a critical temperature of 30 K and can be suppressed by potassium adsorption. The modulation of the replica Dirac band is primarily attributable to the residual frozen gas, which can act as a source of intervalley scattering at temperatures below 30 K. Our results highlight the persistence of the hidden Kekulé-like phase within the heavily doped graphene, enriching our current understanding of its replica Dirac Fermions.

2.
Nanomaterials (Basel) ; 13(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37177078

RESUMO

Ferroelectric materials have received great attention in the field of data storage, benefiting from their exotic transport properties. Among these materials, the two-dimensional (2D) In2Se3 has been of particular interest because of its ability to exhibit both in-plane and out-of-plane ferroelectricity. In this article, we realized the molecular beam epitaxial (MBE) growth of ß-In2Se3 films on bilayer graphene (BLG) substrates with precisely controlled thickness. Combining in situ scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) measurements, we found that the four-monolayer ß-In2Se3 is a semiconductor with a (9 × 1) reconstructed superlattice. In contrast, the monolayer ß-In2Se3/BLG heterostructure does not show any surface reconstruction due to the interfacial interaction and moiré superlattice, which instead results in a folding Dirac cone at the center of the Brillouin zone. In addition, we found that the band gap of In2Se3 film decreases after potassium doping on its surface, and the valence band maximum also shifts in momentum after surface potassium doping. The successful growth of high-quality ß-In2Se3 thin films would be a new platform for studying the 2D ferroelectric heterostructures and devices. The experimental results on the surface reconstruction and band structures also provide important information on the quantum confinement and interfacial effects in the epitaxial ß-In2Se3 films.

3.
Sci Bull (Beijing) ; 68(10): 990-997, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37100643

RESUMO

The itinerant ferromagnetism can be induced by a van Hove singularity (VHS) with a divergent density of states at Fermi level. Utilizing the giant magnified dielectric constant εr of SrTiO3(111) substrate with cooling, here we successfully manipulated the VHS in the epitaxial monolayer (ML) 1T-VSe2 film approaching to Fermi level via the large interfacial charge transfer, and thus induced a two-dimensional (2D) itinerant ferromagnetic state below 3.3 K. Combining the direct characterization of the VHS structure via angle-resolved photoemission spectroscopy (ARPES), together with the theoretical analysis, we ascribe the manipulation of VHS to the physical origin of the itinerant ferromagnetic state in ML 1T-VSe2. Therefore, we further demonstrated that the ferromagnetic state in the 2D system can be controlled through manipulating the VHS by engineering the film thickness or replacing the substrate. Our findings clearly evidence that the VHS can serve as an effective manipulating degree of freedom for the itinerant ferromagnetic state, expanding the application potentials of 2D magnets for the next-generation information technology.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Imãs , Temperatura Baixa
4.
J Phys Chem Lett ; 13(40): 9396-9403, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36190902

RESUMO

The quantum interference patterns induced by impurities in graphene can form the (√3 × âˆš3)R30° superlattice with intervalley scattering. This superlattice can lead to the folded Dirac cone at the center of Brillouin zone by coupling two non-equivalent valleys. Using angle-resolved photoemission spectroscopy (ARPES), we report the observation of suppression of the folded Dirac cone in mono- and bilayer graphene upon potassium doping. The intervalley coupling with chiral symmetry broken can persist upon a light potassium-doped level but be ruined at the heavily doped level. Meanwhile, the folded Dirac cone can be suppressed by the renormalization of the Dirac band with potassium doping. Our results demonstrate that the suppression of the intervalley scattering pattern by potassium doping could pave the way toward the realization of novel chiraltronic devices in superlattice graphene.

5.
Nanomaterials (Basel) ; 11(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34947567

RESUMO

Graphene was reported as the first-discovered two-dimensional material, and the thermal decomposition of SiC is a feasible route to prepare graphene films. However, it is difficult to obtain a uniform single-layer graphene avoiding the coexistence of multilayer graphene islands or bare substrate holes, which give rise to the degradation of device performance and becomes an obstacle for the further applications. Here, with the assistance of nitrogen plasma, we successfully obtained high-quality single-layer and bilayer graphene with large-scale and uniform surface via annealing 4H-SiC(0001) wafers. The highly flat surface and ordered terraces of the samples were characterized using in situ scanning tunneling microscopy. The Dirac bands in single-layer and bilayer graphene were measured using angle-resolved photoemission spectroscopy. X-ray photoelectron spectroscopy combined with Raman spectroscopy were used to determine the composition of the samples and to ensure no intercalation or chemical reaction of nitrogen with graphene. Our work has provided an efficient way to obtain the uniform single-layer and bilayer graphene films grown on a semiconductive substrate, which would be an ideal platform for fabricating two-dimensional devices based on graphene.

6.
Nano Lett ; 21(19): 8258-8265, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34570496

RESUMO

The scattering process induced by impurities in graphene plays a key role in transport properties. Especially, the disorder impurities can drive the ordered state with a hexagonal superlattice on graphene by electron-mediated interaction at a transition temperature. Using angle-resolved photoemission spectroscopy (ARPES), we reveal that the epitaxial monolayer and bilayer graphene with various impurities display global elastic intervalley scattering and quantum interference below the critical temperature (34 K), which leads to a set of new folded Dirac cones at the Brillouin-zone center by mixing two inequivalent Dirac cones. The Dirac electrons generated from intervalley scattering without chirality can be due to the breaking of the sublattice symmetry. In addition, the temperature-dependent ARPES measurements indicate the thermal damping of quantum interference patterns from Dirac electron scattering on impurities. Our results demonstrate that the electron scattering and interference induced by impurities can completely modulate the Dirac bands of graphene.

7.
Adv Mater ; 33(7): e2004930, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33382156

RESUMO

The WSe2 monolayer in 1T' phase is reported to be a large-gap quantum spin Hall insulator, but is thermodynamically metastable and so far the fabricated samples have always been in the mixed phase of 1T' and 2H, which has become a bottleneck for further exploration and potential applications of the nontrivial topological properties. Based on first-principle calculations in this work, it is found that the 1T' phase could be more stable than 2H phase with enhanced interface interactions. Inspired by this discovery, SrTiO3 (100) is chosen as substrate and WSe2 monolayer is successfully grown in a 100% single 1T' phase using the molecular beam epitaxial method. Combining in situ scanning tunneling microscopy and angle-resolved photoemission spectroscopy measurements, it is found that the in-plane compressive strain in the interface drives the 1T'-WSe2 into a semimetallic phase. Besides providing a new material platform for topological states, the results show that the interface interaction is a new approach to control both the structure phase stability and the topological band structures of transition metal dichalcogenides.

8.
Nature ; 577(7789): 204-208, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915394

RESUMO

Graphene films grown by chemical vapour deposition have unusual physical and chemical properties that offer promise for applications such as flexible electronics and high-frequency transistors1-10. However, wrinkles invariably form during growth because of the strong coupling to the substrate, and these limit the large-scale homogeneity of the film1-4,11,12. Here we develop a proton-assisted method of chemical vapour deposition to grow ultra-flat graphene films that are wrinkle-free. Our method of proton penetration13-17 and recombination to form hydrogen can also reduce the wrinkles formed during traditional chemical vapour deposition of graphene. Some of the wrinkles disappear entirely, owing to the decoupling of van der Waals interactions and possibly an increase in distance from the growth surface. The electronic band structure of the as-grown graphene films shows a V-shaped Dirac cone and a linear dispersion relation within the atomic plane or across an atomic step, confirming the decoupling from the substrate. The ultra-flat nature of the graphene films ensures that their surfaces are easy to clean after a wet transfer process. A robust quantum Hall effect appears even at room temperature in a device with a linewidth of 100 micrometres. Graphene films grown by proton-assisted chemical vapour deposition should largely retain their intrinsic performance, and our method should be easily generalizable to other nanomaterials for strain and doping engineering.

9.
Nat Commun ; 10(1): 4469, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578337

RESUMO

Magnetic topological insulators (MTIs) offer a combination of topologically nontrivial characteristics and magnetic order and show promise in terms of potentially interesting physical phenomena such as the quantum anomalous Hall (QAH) effect and topological axion insulating states. However, the understanding of their properties and potential applications have been limited due to a lack of suitable candidates for MTIs. Here, we grow two-dimensional single crystals of Mn(SbxBi(1-x))2Te4 bulk and exfoliate them into thin flakes in order to search for intrinsic MTIs. We perform angle-resolved photoemission spectroscopy, low-temperature transport measurements, and first-principles calculations to investigate the band structure, transport properties, and magnetism of this family of materials, as well as the evolution of their topological properties. We find that there exists an optimized MTI zone in the Mn(SbxBi(1-x))2Te4 phase diagram, which could possibly host a high-temperature QAH phase, offering a promising avenue for new device applications.

10.
Nature ; 570(7759): 91-95, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31118514

RESUMO

The development of two-dimensional (2D) materials has opened up possibilities for their application in electronics, optoelectronics and photovoltaics, because they can provide devices with smaller size, higher speed and additional functionalities compared with conventional silicon-based devices1. The ability to grow large, high-quality single crystals for 2D components-that is, conductors, semiconductors and insulators-is essential for the industrial application of 2D devices2-4. Atom-layered hexagonal boron nitride (hBN), with its excellent stability, flat surface and large bandgap, has been reported to be the best 2D insulator5-12. However, the size of 2D hBN single crystals is typically limited to less than one millimetre13-18, mainly because of difficulties in the growth of such crystals; these include excessive nucleation, which precludes growth from a single nucleus to large single crystals, and the threefold symmetry of the hBN lattice, which leads to antiparallel domains and twin boundaries on most substrates19. Here we report the epitaxial growth of a 100-square-centimetre single-crystal hBN monolayer on a low-symmetry Cu (110) vicinal surface, obtained by annealing an industrial copper foil. Structural characterizations and theoretical calculations indicate that epitaxial growth was achieved by the coupling of Cu <211> step edges with hBN zigzag edges, which breaks the equivalence of antiparallel hBN domains, enabling unidirectional domain alignment better than 99 per cent. The growth kinetics, unidirectional alignment and seamless stitching of the hBN domains are unambiguously demonstrated using centimetre- to atomic-scale characterization techniques. Our findings are expected to facilitate the wide application of 2D devices and lead to the epitaxial growth of broad non-centrosymmetric 2D materials, such as various transition-metal dichalcogenides20-23, to produce large single crystals.

11.
Sci Rep ; 9(1): 2685, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804450

RESUMO

Two-dimensional (2D) transition metal dichalcogenides MX2 (M = Mo, W, X = S, Se, Te) attracts enormous research interests in recent years. Its 2H phase possesses an indirect to direct bandgap transition in 2D limit, and thus shows great application potentials in optoelectronic devices. The 1T' crystalline phase transition can drive the monolayer MX2 to be a 2D topological insulator. Here we realized the molecular beam epitaxial (MBE) growth of both the 1T' and 2H phase monolayer WSe2 on bilayer graphene (BLG) substrate. The crystalline structures of these two phases were characterized using scanning tunneling microscopy. The monolayer 1T'-WSe2 was found to be metastable, and can transform into 2H phase under post-annealing procedure. The phase transition temperature of 1T'-WSe2 grown on BLG is lower than that of 1T' phase grown on 2H-WSe2 layers. This thermo-driven crystalline phase transition makes the monolayer WSe2 to be an ideal platform for the controlling of topological phase transitions in 2D materials family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...